# 题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

• The left subtree of a node contains only nodes with keys less than the node’s key.
• The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
• Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

### Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer $N( \leq 1000)$. Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

### Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

# 题解

## 思路

• 题目意思是判断一个树是不是BST或者大小反转的BST。题目给出前序遍历，让你输出后序遍历

• 如果树只有一项，那直接输出是BST

• 如果大于一项，可以通过比较前两项来判断是BST还是反转的BST

• 注意，这道题柳神的方法其实是有问题的，因为测试数据不够完善导致了能AC。因为，测试数据对于BST来说，与根相等的正好在左子树，而对于翻转的BST来说，与根相等的正好在右子树。

• 理论上，不管是BST还是反转BST，判断柳神方法里i和j的标准的等号位置应该不变，变的是大于号和小于号。这样分开写就可以解决上面的问题，实际上就是钻了测试数据的漏洞。如果你尝试一棵与根相等的在右子树的BST或者一棵与根相等的在左子树的反转BST，就会发现柳神的解答是错误的。

• 对于反转的BST，我们可以给每个数取负号，这样就变成了不反转的BST，可以运用BST的比较规则

• 我们先考虑如何把前序转为后序。假定给定的序列是合法BST

• 前序是根左右，后序是左右根。

• 所以根一定在前序序列首，然后是左子树，然后是右子树。

• 我们先遍历序列左子树，再遍历右子树，再把根添加到答案里，这样可以递归来写，即

• def getpost(root,tail):
getpost(left_root,left_tail)	# 先遍历左子树
getpost(right_root,right_tail)	# 再遍历右子树
post.append(pre[root])			# 添加自己
# 调用
getpost(0,num - 1)
<!--hexoPostRenderEscape:<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br></pre></td><td class="code"><pre><span class="line"></span><br><span class="line">+ 逻辑上，就可以把pre前序转换成post后序列表。当然要处理一下边界条件，就是当&#96;root &gt; tail&#96; 的时候，直接&#96;return&#96;。</span><br><span class="line"></span><br><span class="line">+ 左子树的根就是原root + 1，右子树的尾就是原来的尾，那么如何找到左子树的末尾和右子树的开始呢？</span><br><span class="line"></span><br><span class="line">+ 根据BST的性质，左子树都是小于等于根部的，我们要找到root后第一个比root大的数，它就是右子树的根。相应的，它前面一位就是左子树的末尾。</span><br><span class="line"></span><br><span class="line">+ 不难写出这样的代码。基本框架就搭好了，剩下的就是处理细节。即考虑到题目的特殊要求。</span><br><span class="line"></span><br><span class="line">+ &#96;&#96;&#96;python</span><br><span class="line">  def getpost(root, tail):</span><br><span class="line">      if root &gt; tail:</span><br><span class="line">          return</span><br><span class="line">      i &#x3D; root	# i 找到左子树的末尾</span><br><span class="line">      while i &lt; tail and pre[i + 1] &lt; pre[root]:</span><br><span class="line">          i +&#x3D; 1</span><br><span class="line">      getpost(root + 1, i)</span><br><span class="line">      getpost(i + 1, tail)</span><br><span class="line">      post.append(pre[root])</span><br></pre></td></tr></table></figure>:hexoPostRenderEscape-->


• 要注意，题目里允许了等于根部的节点存在。

• 如何处理等于根部的情况？

• 如果找到了一个等于根部的值，那么它一定不能作为右子树的根部，不然右子树的根和原根相等了。所以遇到和根相等的，一定算在左子树里。

• 所以很容易想到把while里的<改成<=

• 但实际上光这样是不对的

• 因为我们找到了等于根部的值，就把它当作左子树的末尾。而下一个数，必须比根大，否则树就是假BST。

• 比如说，根为8,遇到了8，应该把8设为左子树的末尾。

• 而如果下一个数是5,那么5<8,不能作右子树的开头，应该报错。

• 可是如果用<=的话，它还会略过5再寻找下面一个比8大的作为右子树的根。

• 所以我们应该先找到大于等于根部的数。等于根部,把它作为左子树的末尾，大于根部,把它作为右子树的开头。

• 同时，如果是等于的话，要再多层判断。如果这个数等于且下一个数比根部小，就报错。

• 报错的方式是直接return，这样post就会少一项，就和pre的长度不一样。

• 输出的时候就可以根据两个序列的长度来判断是不是YES

• 所以代码可以这样写

• def getpost(root, tail):
if root > tail:
return
i = root	# i 找到左子树的末尾
while i < tail and pre[i + 1] < pre[root]:
i += 1
if i < tail and pre[i + 1] == pre[root]:
i += 1
if i < tail and pre[i + 1] < pre[root]:
return
getpost(root + 1, i)
getpost(i + 1, tail)
post.append(pre[root])
<!--hexoPostRenderEscape:<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br></pre></td><td class="code"><pre><span class="line"></span><br><span class="line">+ 接下来考虑BST的要求。</span><br><span class="line"></span><br><span class="line">+ BST要求左子树都小于根部，右子树都大于根部。</span><br><span class="line"></span><br><span class="line">+ 我们在寻找左子树的末尾的时候已经保证了左子树都小于根部</span><br><span class="line"></span><br><span class="line">+ 怎么保证右子树都大于根部呢？</span><br><span class="line"></span><br><span class="line">+ 我们在对一个根开始遍历的时候，先递归进入左子树，再递归进入右子树。</span><br><span class="line"></span><br><span class="line">+ 再进入右子树的时候，要携带一下现在这个根的值。</span><br><span class="line"></span><br><span class="line">+ 假如现在的根是A，左边是A-，右边是A+</span><br><span class="line"></span><br><span class="line">+ 对A+进入函数的时候，要判断A+里面的左侧是不是都大于A。（右边都甚至大于A+，所以不用判断了）</span><br><span class="line"></span><br><span class="line">+ 在进入A-的时候，不用判断，那么传递函数的时候就设现在的根为一个极小值-99999就行了。</span><br><span class="line"></span><br><span class="line">+ 总的来说，递归函数的代码就这样。</span><br><span class="line"></span><br><span class="line">+ &#96;&#96;&#96;python</span><br><span class="line">  def getpost(root, tail, last_root):</span><br><span class="line">      if root &gt; tail:</span><br><span class="line">          return</span><br><span class="line">      i &#x3D; root    # i 找到左子树的末尾</span><br><span class="line">      while i &lt; tail and pre[i + 1] &lt; pre[root]:</span><br><span class="line">          if pre[i + 1] &lt; last_root:	# 如果在右子树，里面的值比原来的根小，就报错</span><br><span class="line">              return</span><br><span class="line">          i +&#x3D; 1</span><br><span class="line">      if i &lt; tail and pre[i + 1] &#x3D;&#x3D; pre[root]:</span><br><span class="line">          i +&#x3D; 1</span><br><span class="line">          if i &lt; tail and pre[i + 1] &lt; pre[root]: # 如果右子树开头比根小，就报错</span><br><span class="line">              return</span><br><span class="line">      getpost(root + 1, i, -99999)</span><br><span class="line">      getpost(i + 1, tail, pre[root])</span><br><span class="line">      post.append(pre[root])</span><br></pre></td></tr></table></figure>:hexoPostRenderEscape-->


• 递归函数就写好了，那么剩下的就迎刃而解了。

## 数据结构

• pre 是原来的先序序列
• post 是后序序列
• 递归里i 找到左子树的末尾的下标

## 算法

• 都写在思路里了，应该说是足够翔实了。

## 代码

• 因为原数据格式有问题，所以Python3有一个点会非零返回。C++没问题